Vapour-deposited high-performance tin halide perovskite transistors

<u>Youjin Reo¹</u>, Taoyu Zou¹, Taesu Choi¹, Soonhyo Kim¹, Ji-Young Go¹, Taewan Roh¹, Hyoungha Ryu¹, Yong-Sung Kim², Huihui Zhu³, Ao Liu⁴ and Yong-Young Noh^{1*}

¹Dept. of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo 37673, Republic of Korea

²Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea

³School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China ⁴Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of

China, Chengdu 611731, China

*E-mail : yynoh@postech.ac.kr

Solution-processed tin (Sn^{2+}) -halide perovskites can be used to create p-channel thin-film transistors (TFTs) with performance levels comparable with commercial low-temperature polysilicon technology.^[1-3] However, high-quality perovskite film deposition using industry-compatible production techniques remains challenging. Here we report the fabrication of p-channel Sn²⁺-halide perovskite TFTs using a thermal evaporation approach with inorganic caesium tin iodide (CsSnI₃).^[4] We use lead chloride (PbCl₂) as a reaction initiator that triggers solid-state reactions of the as-evaporated perovskite compounds. This promotes the conversion of dense and uniform perovskite films, and also modulates the intrinsically high hole density of the CsSnI₃ perovskite channels. Our optimized TFTs exhibit average hole field-effect mobilities of around 33.8 cm² V⁻¹ s⁻¹, on/off current ratios of around 10⁸, and large-area fabrication uniformity. The devices also exhibit improved stability compared with solution-deposited devices.

Fig. 1. Electrical characterisations of vapour-deposited CsSnI₃-based TFTs.

References

- [1] A. Liu, et al. Nat. Electron. 5, 78-83 (2022).
- [2] H. Zhu, et al. Nat. Electron. 6, 650-657 (2023).
- [3] A. Liu, et al. Nature 629, 798-802 (2024).
- [4] Y. Reo, et al. Nat. Electron. (2025), In press.

Acknowledgement

This study was supported by the Ministry of Science and ICT through the National Research Foundation, funded by the Korean Government (RS-2021-NR059741 and RS-2023-00260608). This study was also supported by Samsung Display Corporation.